Abstract

Primary explosive, as a reliable initiator for secondary explosives, is the central component of micro-initiators for modern aerospace systems and military operations. However, they are typically prepared as powders, posing potential safety risks because of the inevitable particles scattering issues in the actual working environments. Here, the fabrication of a highly adaptive bulk material of copper azide (CA)-based safe primary explosive for micro-initiators is demonstrated. This bulk material, as derived by a complete azidation reaction of the carbonized metal-organic framework/cross-linked polymer hybrid template, enables the firm embedding of active CA species in a cross-linked carbon network (denoted as CA-C). Interestingly, this CA-C bulk material demonstrates multifarious mechanical stabilities (e.g., good shock and vibration resistance, and anti-overload capacity) in the simulated working conditions. Meanwhile, the CA contents in the CA-C bulk material reached as high as 70.3%, ensuring its detonation power. As a proof of concept, CA-C bulk material assembling in a micro-detonator can efficiently detonate the secondary explosive of CL-20 under laser irradiation. This work hereby advances the fabrication of safe and powerful primary explosives for the fulfillment of safe micro-initiator in a broad range of applications in aerospace systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call