Abstract
Bismuth sulfide (Bi2S3) is a dominant anode material for sodium-ion batteries due to its high theoretical capacity. However, extreme volume fluctuations as well as low electrical conductivity and reaction kinetics still limit its practical applications. Herein, we construct an abundant heterointerface of Bi/Bi2S3 by engineering the structure of Bi nanoparticles embedded on Bi2S3 nanorods (denoted as Bi–Bi2S3 NRs) to effectively solve the abovementioned obstacles. Theoretical and systematic characterization results reveal that the constructed heterointerface of Bi/Bi2S3 has a built-in electric field, significantly boosts the electrical conductivity, enhances the Na+ diffusion kinetics, and buffers the volume variation. With this modification, it can deliver long cycling life, with an ultra-high capacity of 500 mAh g−1 over 500 cycles at 1 A g−1, and outstanding rate capability, with a capacity of 456 mAh g−1 even at 15 A g−1. Moreover, a full cell can achieve a high energy density of 180 Wh kg−1 at a power density of 40 W kg−1. Our research opens up a fresh path for improving the dynamics and structural stability of metal sulfide-based electrode materials for SIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.