Abstract

The development of sufficiently high-efficiency systems and effective catalysts for electrocatalytic hydrogen production is of great significance but challenging. Here, high-entropy alloy nanoclusters (HEANCs) with full-active sites and super-active sites are innovatively constructed for hydrazine oxidation-assisted electrolytic hydrogen production. The HEANCs show an average size of only seven atomic layers (1.48nm). As the catalysts for both hydrogen evolution reaction (HER) and hydrazine oxidation reaction, the HEANC/C exhibits the best-level performance among reported electrocatalysts. Especially, the HEANC/C achieves an ultrahigh mass activity of 12.85 A mg-1 noble metals at -0.07V and overpotential of only 9.5mV for 10mA cm-2 for alkaline HER. Further, with HEANC/C as both anode and cathode catalysts, an overall hydrazine oxidation-assisted splitting (OHzS) electrolyzer shows a record mass activity of 250.2mA mg-1 catalysts at 0.1V and only requires working voltages of 0.025 and 0.181V to reach 10 and 100mA cm-2, respectively, outperforming those of overall water-splitting system and other reported chemicals-assisted hydrogen production systems. Active site libraries including 72 sites on HEANC surface are originally constructed by theoretical calculations, revealing that all sites on HEANC surface are effective active sites for OHzS; especially some are super-active sites, endowing the best-level performance of HEANC/C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call