Abstract

The generation of models and counterexamples is an important form of reasoning. In this paper, we give a formal account of a system, called FALCON, for constructing finite algebras from given equational axioms. The abstract algorithms, as well as some implementation details and sample applications, are presented. The generation of finite models is viewed as a constraint satisfaction problem, with ground instances of the axioms as constraints. One feature of the system is that it employs a very simple technique, called the least number heuristic, to eliminate isomorphic (partial) models, thus reducing the size of the search space. The correctness of the heuristic is proved. Some experimental data are given to show the performance and applications of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.