Abstract

We describe a particular class of pairs of quantum observables which are extremal in the convex set of all pairs of compatible quantum observables. The pairs in this class are constructed as uniformly noisy versions of two mutually unbiased bases (MUB) with possibly different noise intensities affecting each basis. We show that not all pairs of MUB can be used in this construction, and we provide a criterion for determiniing those MUB that actually do yield extremal compatible observables. We apply our criterion to all pairs of Fourier conjugate MUB, and we prove that in this case extremality is achieved if and only if the quantum system Hilbert space is odd-dimensional. Remarkably, this fact is no longer true for general non-Fourier conjugate MUB, as we show in an example. Therefore, the presence or the absence of extremality is a concrete geometric manifestation of MUB inequivalence, that already materializes by comparing sets of no more than two bases at a time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.