Abstract

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a key performance-limiting step of rechargeable zinc-air batteries. Developing a reliable strategy to optimize the activity of Co occupied the tetrahedral site (Coth) is crucial for enhancing electrocatalytic performance and still needs further elaborate elucidation. Here, Mo dopants were used as electron donors to construct low-valence Coth sites in cobalt phosphide, resulting in downshifted d-band centers and strengthened hybridization between Co 3d and P 3p orbitals. The negative charges are easier to accumulate on three antibonding orbitals of Coth, promoting the desorption of oxygen intermediates, as evidenced using density functional theory calculations and in-situ spectroscopic investigations. The optimal catalyst delivers impressive ORR and OER performance, in terms of half-wave potential of 0.84V for ORR and overpotential of 247mV for OER. In general, this work opens a new opportunity to rationally regulate electronic structure of Coth sites via introducing an electron donor, as well as provides guidance for exploring electronic descriptors of tetrahedral sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.