Abstract

In this work, a generic substructuring algorithm is employed to construct global block-diagonal preconditioners for BEM systems of equations. In this strategy, the allowable fill-in positions are those on-diagonal block matrices corresponding to each BE subregion. As these subsystems are independently assembled, the preconditioner for a particular BE model, after the LU decomposition of all subsystem matrices, is easily formed. So as to highlight the efficiency of the preconditioning proposed, the Bi-CG solver, which presents a quite erratic convergence behavior, is considered. In the particular applications of this paper, 3D representative volume elements (RVEs) of carbon-nanotube (CNT) composites are analyzed. The models contain up to several tens of thousands of degrees of freedom. The efficiency and relevance of the preconditioning technique is also discussed in the context of developing general (parallel) BE codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.