Abstract

Modular co-culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co-cultures composed of two and three Escherichia coli strains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value-added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicated E. coli strain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co-cultures show a 4.83-fold improvement in production comparing to the mono-culture controls. Importantly, cultivation of the three-strain co-culture in shake flasks result in the production of 20.3mg L-1 acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co-culture engineering for complex flavonoid biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call