Abstract

In recent years, membrane separation technology has been widely used in various fields. And for the increasingly severe oily wastewater system, there is an increasing demand for the anti-fouling properties of the membranes. Based on the concept of fluorine-free, non-toxic, environmental-friendly and low-cost, this study constructed a discontinuous silicon-island structure with low surface energy on the surface of the hydrophilic membrane, which endows the PVDF-CTFE membrane with fouling resistance and cleaning pH-responsiveness. The discontinuous silicon-island structures were constructed by introducing SiO2 nanoparticles on the super-hydrophilic layer of the PVDF-CTFE membrane modified by itaconic acid, and then hydrophobically treated with polydimethylsiloxane (PDMS). The experimental results exhibited that the modified membrane reached the hydrophobic and underwater super-oleophobic state when treated by PDMS for 1.0 h. The water contact angle (WCA) and the underwater oil contact angle (OCA) were 124° and 151°, respectively. Furthermore, the water flux remained at 186 L m−2 h−1 with no serious pore-plugging. Moreover, the water flux decay rate (FDR) remained below 19.6%, when modified membrane treating soybean oil/water emulsion for 6 cycles, presenting an excellent anti-fouling performance. Additionally, the water flux recovery rate (FRR) was over 99.3% after alkali cleaning, indicating the modified membrane possessed excellent cleaning pH-responsiveness. The above analysis exhibited that the synergistic effect of hydrophilic micro-domains and oleophobic micro-domains not only slows down the attachment of hydrophobic pollutants but also promotes the separation of hydrophobic pollutants during chemical cleaning, which greatly improves its anti-fouling performance and expands its application prospect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call