Abstract

In the construction of DEM, terrain features (e.g. valleys or stream lines, ridges, peaks, saddle points) are important for improving DEM accuracy and saw many applications in hydrology, precision agriculture, military trajectory planning, etc. HASM (High Accuracy Surface Modeling) is a method for surface modeling, which is based on the theory of surface. Presently, HASM is only used for scattered point's interpolation. So the work in this paper attempts to construct DEM based on the characteristic terrain information as stream lines and scattered points by HASM method. The course is described as the following steps. Firstly TIN (Triangulated Irregular Network) from the scattered points is generated. Secondly, each segment of the stream lines is well oriented to represent stream lines' flow direction, and a tree data structure (that has parent, children and brothers) is used to represent the whole stream lines' segments. A segment is a curve which does not intersect with other segments. A Water Course Flow (WCF) line is a set of segment lines connected piecewise but without overlapping or repetition, from the most upper reaches to the most lower reaches. From the stream lines' tree data structure, all the possible WCF lines are enumerated, and the start point and end point of each WCF lines is predicted from searching among the TIN. Thirdly, given a cell size, a 2-D matrix for the research region is built, and the values of the cells who were traversed by the stream lines by linear interpolation among each WCF lines. Fourthly, all the valued cells that were passed through by the stream line and that were from the scattered points are gathered as known scattered sampling points, and then HASM is used to construct the final DEM. A case study on the typical landform of plateau of China, KongTong gully of Dongzhi Plateau, Qingyang, Gausu province, is presented. The original data is manually vecterized from scanned maps 1:10,000, includes scattered points, stream lines, contour lines, precipitous cliff lines of a region of area about 4×5 square km. For simplicity only the former two kinds of data sources are used. By Comparing with the result from stream-line-constrained TIN and hydrologically correct DEM construction method Thin plate Spline (TPS, that is implemented as command TopoToRaster in ArcGIS 9.0 and later version)through visual inspection, HASM gets a more desirable DEM and more reasonable integration of information of the terrain features. Finally, some challenges and future research about HASM is also given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call