Abstract
The construction of heterojunction photocatalyst is an emerging strategy for realizing efficient photocatalytic hydrogen production, and the methodology of construction is critical for improving the interfacial charge carriers separation and transfer. A weakly coupling interface in a heterojunction leads to lower hydrogen production activity and stability. Herein, a facile strategy based on an in-situ interlocking reaction is developed to solve the interfacial contact issue. Litchi-like CdS is anchored at the defects of the g-C3N4 (CN) by an interlocking process, and the contact interface is further extended by some small necking CdS particles that assembled on the contact corner because of the surface tension. The as-formed CdS/g-C3N4 (CdS/CN) has a unique and strongly coupling interface, which can effectively improve interfacial separation and transfer kinetics of photogenerated charge carriers due to the synthetic advantages of interlocking binding, necking effect, and heterojunction. Impressively, the as-prepared CdS/CN photocatalyst yields over 36 folds of cocatalyst-free hydrogen generation rate than the pure CdS under the visible light irradiation. This work presents a case of practical study to realize the synthesis of defect-mediated heterojunction photocatalysts by a facile strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.