Abstract

Google Trends have become a popular data source for social science research. We show that for small countries or sub-national regions like U.S. states, underlying sampling noise in Google Trends can be substantial. The data may therefore be unreliable for time series analysis and is furthermore frequency-inconsistent: daily data differs from weekly or monthly data. We provide a novel sampling technique along with the R-package trendecon in order to generate stable daily Google search results that are consistent with weekly and monthly queries of Google Trends. We use this new approach to construct long and consistent daily economic indices for the (mainly) German-speaking countries Germany, Austria, and Switzerland. The resulting indices are significantly correlated with traditional leading indicators, with the advantage that they are available much earlier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.