Abstract

The application of supermolecular naonostructures in the photocatalytic carbon dioxide reduction reaction (CO2RR) has attracted increasing attentions. However, it still faces significant challenges, such as low selectivity for multi-electron products and poor stability. Here, the cuprous oxide (Cu2O)-modified zinc tetraphenylporphyrin ultrathin nanosheets (ZnTPP NSs) are successfully constructed through the aqueous chemical reaction. Comprehensive characterizations confirm the formation of type-II heterojunction between Cu2O and ZnTPP in Cu2O@ZnTPP, and the electron transfer from Cu2O to ZnTPP through the Zn-O-Cu bond under the static contact. Under the visible-light irradiation (λ > 420 nm), the optimized Cu2O@ZnTPP sample as catalyst for photocatalytic CO2RR exhibits the methane (CH4) evolution rate of 120.9 μmol/g/h, which is ∼ 4 and ∼ 10 times those of individual ZnTPP NSs (28.0 μmol/g/h) and Cu2O (12.8 μmol/g/h), respectively. Meanwhile, the CH4 selectivity of ∼ 98.7 % and excellent stability can be achieved. Further experiments reveal that Cu2O@ZnTPP has higher photocatalytic conversion efficiency than Cu2O and ZnTPP NSs, and the photoinduced electron transfer from ZnTPP to Cu2O can be identified via the path of ZnTPP→ (ZnTPP•ZnTPP)*→ ZnTPP-→ Zn-O-Cu → Cu2O. Consequently, Cu2O@ZnTPP exhibits a shorter electron-hole separation lifetime (3.3 vs. 9.3 ps) and a longer recombination lifetime (23.1 vs. 13.4 ps) than individual ZnTPP NSs. This work provides a strategy to construct the organic nanostructures for photocatalytic CO2RR to multi-electron products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call