Abstract

Regulating intermediates through elaborate catalyst design to control the reaction direction is crucial for promoting the selectivity of electrocatalytic CO2 -to-CH4 . M-C (M=metal) bonds are particularly important for tuning the multi-electron reaction; however, its construction in nanomaterials is challenging. Here, via rational design of in situ anchoring of Cu SAs (single atoms) on the unique platform graphdiyne, we firstly realize the construction of a chemical bond Cu-C (GDY). In situ Raman spectroelectrochemistry and DFT calculations confirm that due to the fabrication of the Cu-C bond, during CO2 reduction, the formation of *OCHO intermediates is dominant rather than *COOH on Cu atoms, facilitating the formation of CH4 . Therefore, we find that constructing the Cu-C bond in Cu SAs/GDY can supply an efficient charge transfer channel, but most importantly control the reaction intermediates and guide a more facile reaction pathway to CH4 , thereby significantly boosting its catalytic performance. This work provides new insights on enhancing the selectivity for CO2 RR at the atomic level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call