Abstract

This paper tackles the problem of constructing finite abstractions for formal controller synthesis with high dimensional systems. We develop a theory of abstraction for discrete time nonlinear systems that are equipped with variables acting as interfaces for other systems. Systems interact via an interconnection map which constrains the value of system interface variables. An abstraction of a high dimensional interconnected system is obtained by composing subsystem abstractions with an abstraction of the interconnection. System abstractions are modular in the sense that they can be rearranged, substituted, or reused in configurations that were unknown during the time of abstraction. Constructing the abstraction of the interconnection map can become computationally infeasible when there are many systems. We introduce intermediate variables which break the interconnection and the abstraction procedure apart into smaller problems. Examples showcase the abstraction of a 24-dimensional system through the composition of 24 individual systems, and the synthesis of a controller for a 6-dimensional system with a consensus objective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.