Abstract

Web attacks have increased rapidly in recent years. However, traditional methods are useless to track web attackers. Browser fingerprint, as a stateless tracking technique, can be used to solve this problem. Given browser fingerprint changes easily and frequently, it is easy to lose track. Therefore, we need to improve the stability of browser fingerprint by linking the new one to the previous chain. In this paper, we propose LSTM model to learn the potential relationship of browser fingerprint evolution. In addition, we adjust the input feature vector to time series and construct training set to train the model. The results show that our model can construct the tracking chain perfectly well with average ownership up to 99.3%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.