Abstract

Two-dimensional (2D) tessellation of organic species acquired increased interests recently because of their potential applications in physics, biology, and chemistry. 2D tessellations have been successfully constructed on surfaces via various intermolecular interactions. However, the transformation between 2D tessellation lattices has been rarely reported. Herein, we successfully fabricated two types of Kagome lattices on Cu(111). The former phase exhibits (3,6,3,6) Kagome lattices, which are stabilized via the intermolecular hydrogen bond interactions. The latter phase is formed through direct chemical transferring from the former one maintaining almost the same Kagome lattices, except for that the unit cell rotates for 4°. Detailed scanning tunneling microscopy and density functional calculation studies reveal that the chemical transformation is achieved by the formation of the N-Cu-N metal-organic bonds via dehydrogenation reactions of the amines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call