Abstract

Opinion spam, intentionally written by spammers who do not have actual experience with services or products, has recently become a factor that undermines the credibility of information online. In recent years, studies have attempted to detect opinion spam using machine learning algorithms. However, limitations of gold-standard spam datasets still prove to be a major obstacle in opinion spam research. In this paper, we introduce a novel dataset called Paraphrased OPinion Spam (POPS), which contains a new type of review spam that imitates real human opinions using crowdsourcing. To create such a seemingly truthful review spam dataset, we asked task participants to paraphrase truthful reviews, and include factual information and domain knowledge in their reviews. The classification experiments and semantic analysis results show that our POPS dataset most linguistically and semantically resembles truthful reviews. We believe that our new deceptive opinion spam dataset will help advance opinion spam research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.