Abstract

Antibiotic pollution has raised widely attention due to the difficult biodegradation and lasting toxicity to public health, metal-free material based heterogeneous catalysis is a highly-promise and eco-friendly technology for organics elimination. Herein, boron doped biomass carbon fiber (B-CF) was synthesized to construct orderly electron transport channels for enhancing catalytic performance and deeply purifying organics polluted water. Integrating systematical quenching experiments and EPR detection, O2·- and 1O2 are found to be dominating reactive oxygen species (ROS) for norfloxacin (NOR) degradation rather than ∙OH or SO4∙-. Adsorption, catalytic degradation in pristine CF/peroxodisulfate (PDS) and B-CF/PDS systems, electrochemical tests, and theory calculations were compared and the results suggested B-CF surface can trigger intense electron transfer via simultaneous activating NOR and PDS, and electrons transferred from NOR to B-CF-PDS compound, resulting in selective and remarkably enhanced ROS generation. Moreover, it was found that B-CF exhibited surprising adsorption capacity for NOR (834.4 mg g−1), and it can also remove SO42- from the solution through electrostatic attraction. This B-CF/PDS system is efficient within a wide operation pH from 3 to 11 and exhibits long lasting activity (> 274 h maintaining over 80% efficiency). This study unveils the highly selective formation of O2-· and 1O2 and solves the short lifetime of catalysts in persulfate-based catalysis, which provides feasible technology for advanced water purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.