Abstract

Constructing heterojunctions to separate photogenerated carriers is an effective strategy for improving the efficiency of photocatalytic reactions. A J-type heterojunction is a recently reported efficient anisotropic heterojunction. Herein, taking anisotropic ZnIn2S4 (ZIS) nanosheets as an example of a type-II heterojunction, we report for the first time the concept of open and closed structures (O and C structure) of J-type heterojunctions. A simple ammonia-post-treatment method was employed to prepare the O- and C-structured J-type ZnIn2S4/In(OH)3 (ZIS/IOH) heterojunctions. The O-structured J-type ZIS/IOH (OJ-ZIS/IOH) heterojunction exhibits a high hydrogen production activity, reaching 400 μmol·h-1, 2.67 times higher than that of pristine ZIS. However, the activity of the C-structured heterojunction (CJ-ZIS/IOH) is close to that of pristine ZIS. The findings emphasize the importance of the cooperation of photogenerated carrier separation and transport in J-type heterojunctions, providing insights into developing efficient heterojunction photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.