Abstract
Understanding how to prepare and count black hole micro-states by using the gravitational path integral is one of the most important problems in quantum gravity. Nevertheless, a state-by-state count of black hole microstates is difficult because the apparent number of degrees of freedom available in the gravitational effective theory can vastly exceed the entropy of the black hole, even in the special case of BPS black holes. In this paper, we show that we can use the gravitational path integral to prepare a basis for the Hilbert space of all BPS black hole microstates. We find that the dimension of this Hilbert space computed by an explicit state count is in complete agreement with the degeneracy obtained from the Gibbons-Hawking prescription. Specifically, this match includes all non-perturbative corrections in 1/GN. Such corrections are, in turn, necessary in order for this degeneracy of BPS states to match the non-perturbative terms in the 1/GN expansion in the string theory count of such microstates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.