Abstract

Designing pure carbonaceous microwave absorbers with strong absorption capability and broad effective absorption bandwidth (EAB) is still a challenge for efficient microwave absorption. Here, a kind of bimetallic metal-organic frameworks derived porous amorphous carbon particle with hollow graphene spheres confined in it (HGS@PAC), was prepared by the controlled annealing process. The thickness of hollow graphene spheres could be tuned from 9 graphene layers to 24 graphene layers by adjusting the annealing time, and thereby tuning their dielectric properties. The minimum RC of the optimized HGS@PAC reaches −56 dB at 3.5 GHz with a thickness of 6.75 mm, indicating its strong microwave absorption performance. In addition, the widest EAB reaches 5.6 GHz (12.4–18 GHz) with a thickness of only 1.85 mm. It is important to highlight that the EAB can cover the whole measured bandwidth (2–18 GHz) with the sample thickness ranging from 1.85 mm to 10 mm. The enhanced microwave attenuation ability can be ascribed to the enhanced interfacial polarization, dipole polarization, and conductive loss, resulting from the designed unique architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.