Abstract
Developing well-performing and stable bifunctional electrocatalysts is of great importance for efficient green hydrogen production through water electrolysis. Herein, a three-dimensional self-supported CoMoS3.13/FeS2/Co3S4 on carbon paper (FeCoMoS/CP) heterostructure with interconnected nanosheets for overall water splitting was fabricated by a facile hydrothermal method followed by vulcanization treatment. The FeCoMoS/CP heterostructure with high structural integrity and more accessible active sites can effectively optimize the electronic structure through component regulation to achieve enhanced catalytic activity. Significantly, the FeCoMoS/CP required overpotentials of 257 mV at 50 mA cm-2 for OER and 280 mV at 20 mA cm-2 for HER. Importantly, the assembled FeCoMoS/CP||FeCoMoS/CP alkaline electrolyzer achieved a superior cell voltage of 1.48 V at 10 mA cm-2 with superb long-term stability, which implies a remarkable electrocatalytic performance of the FeCoMoS/CP heterostructure for overall water splitting. This work provides an applicable route for synthesizing high-performance bifunctional catalysts toward water electrolysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.