Abstract

A built-in electric field generated at the p-n heterojunction will enhance charge transfer at the interface, which brings a new strategy for improving electrochemical energy storage. Herein, we construct a novel p-n heterojunction in a three-dimensional (3D) urchin-like CoNixSy/g-C3N4 (3D–2D) junction microsphere based on a one-step solvothermal method. The forming built-in electric field at the heterointerface of p-type semiconductor (CoNixSy) and n-type semiconductor (g-C3N4) ensure its high-efficiency charge transfer. Besides, the porous 3D urchin-like microsphere could facilitate the diffusion of electrolytes and enhance the stability and volumetric energy density. Benefiting from the synergistic advantages of the p-n heterojunction and the 3D urchin-like structure, the CoNixSy/g-C3N4 electrode displayed an ultrahigh battery-type specific capacity (1029 C g−1) in a three-electrode system. Furthermore, an asymmetric supercapacitor formed by positive electrode of CoNixSy/g-C3N4 and negative electrode of activated carbon (AC) obtains a high energy density of 71.9 Wh kg−1 and a retention of 72.2% after 5000 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call