Abstract

Interfacial charge transfer effect (IFCT) was introduced into g-C3N4 by grafting Fe(III) species on its surface via a simple impregnation method. It has been shown that the obtained Fe(III)-grafted g-C3N4 photocatalyst exhibited enhanced visible-light absorption, reduced charge recombination and improved photocatalytic activity as compared with those of g-C3N4, due to the interfacial charge transfer between the Fe(III) species and g-C3N4. Furthermore, a novel ternary Fe(III)/graphene/g-C3N4 photocatalyst was successfully constructed by integrating graphene into the binary Fe(III)/g-C3N4 composite as the electron mediator. It has been found that the introduction of graphene made the Fe species show well distribution, smaller size and relatively high content in the ternary photocatalyst as compared with those in the binary one, revealing a synergistic effect between the Fe(III) species and graphene existed in the ternary photocatalyst. Consequently, the photocatalytic activity of the ternary Fe(III)/graphene/g-C3N4 photocatalyst was superior to that of the binary one, originating from its stronger visible-light absorption and more reduced charge combination. The ternary composite that consists of transition metal, graphene and g-C3N4 represents a new kind of high-efficiency visible-light-driven photocatalysts for water disinfection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.