Abstract
In the chaotic polynomial Lorenz-type systems (including Lorenz, Chen, Lü and Yang systems) and Rössler system, their equilibria are unstable and the number of the hyperbolic equilibria are no more than three. This paper shows how to construct a simple analytic (nonpolynomial) chaotic system that can have any preassigned number of equilibria. A special 3D chaotic system with no equilibrium is first presented and discussed. Using a methodology of adding a constant controller to the third equation of such a chaotic system, it is shown that a chaotic system with any preassigned number of equilibria can be generated. Two complete mathematical characterizations for the number and stability of their equilibria are further rigorously derived and studied. This system is very interesting in the sense that some complex dynamics are found, revealing many amazing properties: (i) a hidden chaotic attractor exists with no equilibria or only one stable equilibrium; (ii) the chaotic attractor coexists with unstable equilibria, including two/five unstable equilibria; (iii) the chaotic attractor coexists with stable equilibria and unstable equilibria, including one stable and two unstable equilibria/94 stable and 93 unstable equilibria; (iv) the chaotic attractor coexists with infinitely many nonhyperbolic isolated equilibria. These results reveal an intrinsic relationship of the global dynamical behaviors with the number and stability of the equilibria of some unusual chaotic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.