Abstract

Functionalized metal-organic frameworks (MOFs) are being extensively developed as viable fillers to enhance the proton conductivity of proton exchange membranes. Herein, an amino-pendant sulfonic acid bi-functionalized MOFs material (UNCS)-doped SPEEK membrane with low degree of sulfonation (DS) can improve the proton conductivity as well as maintain the membrane dimensional stability. UNCS can act as bridges of proton donors and acceptors to reduce the activation energy barrier and shorten the distance of long-range proton conduction. Among all as-prepared membranes, SPEEK/UNCS-3 exhibited the highest proton conductivity of 186.4 mS·cm−1 at 75 °C and 100% relative humidity (RH), which is much greater than that of pristine SPEEK and Nafion 117. Benefiting from the acid-base pair interaction between the amino groups of UNCS and the sulfonic acid groups of SPEEK, the dimensional stability and mechanical properties of the composite membranes were enhanced. More interestingly, STEM-HAADF and SAXS characterization consistently revealed that UNCS served as bridges among proton channels in the composite membranes for continuous proton transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call