Abstract
Increasingly, commercial vehicles are equipped with automated vehicle (AV) features such as adaptive cruise control systems. The AV feature can automatically control the headway between the current vehicle and the preceding vehicle in an adaptive manner. The automatic control may lead to significantly different car- following motions compared with those of human-driven vehicles, which challenges the applicability of classic traffic flow theory to emerging road traffic with AVs. To investigate the impacts of commercial AVs on traffic flow, this paper proposes a general methodology that combines both empirical experiments and theoretical models to construct a fundamental diagram (FD), i.e., the foundation for traffic flow theory for AV traffic. To demonstrate the empirical experiment settings, we collected high-resolution trajectory data with multiple commercial AVs following one another in a platoon with different headway settings. The field experiment results revealed that the traditional triangular FD structure remains applicable to describe the traffic flow characteristics of AV traffic. Further, by comparing the FDs between AVs and human-driven vehicles, it was found that although the shortest AV headway setting can significantly improve road capacity, other headway settings may decrease road capacity compared with existing human-driven-vehicle traffic. It was also found that headway settings may affect the stability of traffic flow, which has been revealed by theoretical studies but was first verified by empirical AV data. With these findings, mixed traffic flow FDs were derived by incorporating different headway settings and AV penetration rates. The method proposed in this paper, including experiment designs, data collection approaches, traffic flow characteristics analyses, and mixed traffic flow FD construction approaches, can serve as a methodological foundation for studying future mixed traffic flow features with uncertain and evolving AV technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.