Abstract

Numbers are concepts whose content, structure, and organization are influenced by the material forms used to represent and manipulate them. Indeed, as argued here, it is the inclusion of multiple forms (distributed objects, fingers, single- and two-dimensional forms like pebbles and abaci, and written notations) that is the mechanism of numerical elaboration. Further, variety in employed forms explains at least part of the synchronic and diachronic variability that exists between and within cultural number systems. Material forms also impart characteristics like linearity that may persist in the form of knowledge and behaviors, ultimately yielding numerical concepts that are irreducible to and functionally independent of any particular form. Material devices used to represent and manipulate numbers also interact with language in ways that reinforce or contrast different aspects of numerical cognition. Not only does this interaction potentially explain some of the unique aspects of numerical language, it suggests that the two are complementary but ultimately distinct means of accessing numerical intuitions and insights. The potential inclusion of materiality in contemporary research in numerical cognition is advocated, both for its explanatory power, as well as its influence on psychological, behavioral, and linguistic aspects of numerical cognition.

Highlights

  • Numbers are concepts whose content, structure, and organization are influenced by the material forms used to represent and manipulate them

  • Insight into the nature of number has been sought in the perceptual experience of quantity, something shared by so many species it would be surprising to find one that lacked, minimally, the ability to distinguish more from less

  • Distributed are behaviors like finger-counting (Domahs, Kaufmann, & Fischer, 2012) and the use of comparison and combinatorial strategies, phenomena whose universality is attested by the somatic basis of numbers, behavioral strategies like one-to-one correspondence, and the use of material forms to represent and manipulate numerical concepts (e.g., McCrink, Spelke, Dehaene, & Pica, 2013; Von den Steinen, 1894)

Read more

Summary

Introduction

Numbers are concepts whose content, structure, and organization are influenced by the material forms used to represent and manipulate them. These conditions are plausibly related: Numbers represented by disparate material forms might tend not to be organized in the same way influenced by contiguous forms like the fingers and tallies (e.g., linear with stable order), nor defined against one another to become more discrete.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call