Abstract
We present a class of topological plasma configurations characterized by their toroidal and poloidal winding numbers, nt and np, respectively. The special case of nt=1 and np=1 corresponds to the Kamchatnov-Hopf soliton, a magnetic field configuration everywhere tangent to the fibers of a Hopf fibration so that the field lines are circular, linked exactly once, and form the surfaces of nested tori. We show that for nt∈Z+ and np=1, these configurations represent stable, localized solutions to the magnetohydrodynamic equations for an ideal incompressible fluid with infinite conductivity. Furthermore, we extend our stability analysis by considering a plasma with finite conductivity, and we estimate the soliton lifetime in such a medium as a function of the toroidal winding number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.