Abstract

As a direct Z-scheme photocatalyst, a two-dimensional/two-dimensional (2D/2D) Bi2O2CO3/Bi4O5Br2 (BOC/BOB) heterostructure was fabricated by stacking the ultrathin nanosheets of Bi2O2CO3 and Bi4O5Br2 via a simple one-step hydrothermal synthesis process. The atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM) results show that the heterostructure was successfully formed by coupling the ultrathin nanosheets of BOC and BOB. By optimizing the content of BOC, we found that the 30% BOC/BOB composite can exhibit a superior photocatalytic activity (53.2%) for NOx removal under simulated solar light illumination, which is much higher than that of single-phase BOC (20.4%) or BOB (37.9%). The results from trapping experiments and DMPO-ESR spin-trapping measurements demonstrate that both O2– and OH are the main active species during the photocatalytic reaction process. According to the DFT calculations, a Z-scheme heterojunction is formed between the BOC and BOB ultrathin nanosheets, in which the photo-induced electrons in BOC are combined with holes in BOB. This process can effectively hinder the recombination of photo-induced charge carriers in the BOC/BOB nanocomposites and resulting in the enhancement of charge separation efficiency. This work may shed light on developing more efficient photocatalysts by designing the 2D/2D Z-scheme heterostructures using ultrathin nanosheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.