Abstract
The Zn dendrite growth and side reactions are two major issues for the practical use of Zn metal anodes (ZMAs). Herein, an N-doped carbon-based hybrid fiber with the 3D porous skeleton and the zincophilic Cu nanoparticles (denoted as Cu@HLCF) is developed for stable ZMAs. The zincophilic Cu particles in the skeleton work as the active sites to facilitate uniform Zn nucleation. Meanwhile, the abundant pores in the framework of the hybrid fibers provide a large space to relieve the structural stress and suppress the dendrite growth. Moreover, the good mechanical characteristics of the hybrid fiber ensure its high potential applications for flexible electronics. Theoretical analysis results disclose the strong interaction between Zn and Cu sites, and experimental results demonstrate the low voltage hysteresis, high reversibility, and dendrite-free behavior of the Cu@HLCF host for Zn plating/stripping. Moreover, the solid-state Zn-ion battery (ZIB) assembled with a Cu@HLCF/Zn anode shows the prominent flexibility, impressively reliability, and outstanding cycling capability. Therefore, this work not only provides a novel design for the efficient and stable Zn metal anode but also promotes the development of flexible power sources for flexible electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.