Abstract

AbstractSubstrate design has attracted much interest in development of an effective surface enhanced Raman scattering (SERS) sensor. A flexible SERS substrate with excellent performance needs to be sensitive to details of the preparation process; this sensitivity represents a significant challenge for practical applications as opposed to laboratory research applications. Here, a 3D flexible plasmonic structure, AgNPs@MoS2/pyramidal polymer (polymethyl methacrylate), is fabricated using a simple and low‐cost method. Using experiments and theoretical simulations, the SERS performance of the proposed substrate is assessed in terms of its high enhancement factor, ultrasensitivity, quantifiability, reproducibility, stability, and reusability. Finally, the ultralow in situ detection limits of the standard melamine solution and melamine in milk are found to be 10−10 and 10−6m, respectively, which meet the demand for real applications in the food security field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.