Abstract

The low separation efficiency of carriers limited the application of g-C3N4 (CN) in the photodegradation of fluoroquinolones antibiotics, and the construction of two-dimensional/two-dimensional (2D/2D) heterojunction was an effective strategy. In this paper, 2D/2D N-ZnO/CN S-scheme heterojunction composites (x NZCN, x was the mass ratio of ZIF-L/CN) were prepared by calcining ZIF-L/CN composites which were formed via ultrasonic-assisted electrostatic self-assembly method. The photodegradation efficiencies of Norfloxacin (NOR), enrofloxacin, levofloxacin, and ciprofloxacin reached more than 90% in 90 min by 15% NZCN/vis system. Moreover, the rate constant of 15% NZCN for photodegrading NOR was 4.15 times and 4.65 times higher than CN and N-ZnO, respectively. The efficient photocatalytic performance of 15% NZCN was attributed to the excellent light capture capacity and the effective migration and separation of carriers. The active species that worked in the photodegradation of NOR were dominated by holes and superoxide radicals. In addition, degradation pathways of NOR were proposed. This work enriched 2D/2D heterojunction engineering for CN, and provided a new possibility for combining 2D MOFs-derivatives with CN to solve the antibiotic pollution problem in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.