Abstract

0D/2D Pt-C3N4/CdS heterojunction photocatalyst were fabricated with CdS quantum dots interspersed on g-C3N4 nanosheets via successive ionic layer absorption process. The obtained Pt-C3N4/CdS Z-scheme heterojunction with Pt cocatalyst deposited on g-C3N4 nanosheets exhibited H2 production rate of 35.3 mmol g−1 h−1, which is 3.1 times higher than that of Pt-CdS/C3N4. The enhanced photocatalytic activity are attributed to the Z-scheme charge carrier transfer mechanism with stronger redox ability. The photocatalytic mechanism of the CdS/g-C3N4 composite is investigated and demonstrated in this work. It may provide unique insights to design 0D/2D Z-scheme heterojunction photocatalyst systems using a facile method for highly efficient H2 production. Schematic illustration of charge transfer modulated by the metal cocatalyst selective deposition on heterojunction-type II (a) and direct Z-Scheme mechanisms (b) over the C3N4/CdS heterostructure composites under visible light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.