Abstract
An S-scheme heterojunction photocatalyst is capable of boosting photogenerated carrier separation and transfer, thus maintaining high photooxidation and photoredox ability. Herein, a 0D Ag3PO4 nanoparticles (NPs)/1D TiO2 nanofibers (NFs) S-scheme heterojunction with intimate interfacial contact was designed via the the hydro-thermal method. Benefiting from the abundant hydroxyl groups and size confinement effect of TiO2 NFs, the average diameter of the Ag3PO4 nanoparticles decreased from 100 to 22 nm, which favored the construction of a 0D/1D geometry heterojunction. The multifunctional Ag3PO4/TiO2 sample exhibited excellent photocatalytic activity and stability in photocatalytic oxygen production (726 µmol/g/h) and photocatalytic degradation of various organic contaminants such as rhodamine B (100%), phenol (60%) and tetracycline hydrochloride (100%). The significant improvements in the photocatalytic performance and stability can be attributed to the intimate interfacial contacts and rich active sites of 0D/1D geometry, fast charge carrier migration, and outstanding photoredox properties induced by the S-scheme charge-transfer route. This work offers a promising strategy for constructing 0D/1D S-scheme heterojunction photocatalysts for improved photocatalytic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.