Abstract

Constructed wetlands (CWs) are receiving a renewed attention as a viable phytotechnology for treating agricultural wastewaters and for the removal of more specific pollutants, in particular recalcitrant ones. In this work, the performance of CW mesocosms using light expanded clay aggregates (LECA) as the bed's substrate and planted with Phragmites australis was investigated for treatment of olive mill wastewater (OMW), swine wastewater (SW) contaminated with oxytetracycline and water contaminated with herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid). Both wastewaters (OMW and SW) initially presented high organic matter content and total suspended solids which were removed by the system with efficiencies higher than 80%. Removal of polyphenols in OMW and nitrogen compounds in SW also showed similar or higher efficiencies in comparison with other treatment systems reported in the literature. The antibiotic oxytetracycline was completely removed from SW within the assay period in unplanted LECA beds, but planted beds allowed a significantly faster removal. In regard to water contaminated with MCPA, the results showed that LECA has a large sorption capacity for this herbicide (removal efficiencies of 56–97%). In general, considerably higher pollutant removal efficiencies were obtained when plants were used (up to 28% higher). The results obtained are indicative that CWs with LECA as substrate may be an adequate option for agricultural wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call