Abstract

In Northern Ireland, phosphorus enrichment of lakes due to agriculture is a significant problem. Heavy metal exports from landfill sites, often located on water-logged land, are also of concern. Locally available laterite, a low grade bauxite which is rich in iron and aluminium, is used in acid solution with subsequent precipitation to remove phosphorus and heavy metals at several sewage treatment works. Constructed wetlands offer an attractive alternative to conventional waste water treatment in certain circumstances but removal of phosphorus is strongly dependent on the bed medium. Calcium-, iron- and aluminium-rich solid media are recommended. A brief introduction to the use and cost-effectiveness of constructed wetlands (CWs) in treating a range of effluents is given. This study, using both laboratory tests and pilot-scale constructed wetlands, reports the effectiveness of granular laterite in removing phosphorus and heavy metals from landfill leachate. Initial laboratory studies have shown that laterite is capable of 99% removal of phosphorus from solution. A pilot-scale experimental CW containing laterite achieved 96% removal of phosphorus. This removal is much greater than that reported in other systems. Initial removals of aluminium and iron by pilot-scale CWs have been up to 85% and 98% respectively. Percolating columns of laterite reduced Cd, Cr and Pb to undetectable concentrations. Possible application of this low cost, low technology, visually unobtrusive yet efficient system to rural areas with dispersed point sources of pollution is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call