Abstract

We present a simple approach for preparing hydrophobic silicon surfaces by constructing silicon nanowire arrays using Ag-assisted chemical etching without low-surface-energy material modification. The static and dynamic wetting properties of the nanostructured surfaces and their dependence on etching conditions were studied. It was revealed that the surface topologies of silicon nanowire arrays and their corresponding wetting properties could be tuned by varying the etching time. Under optimized etching conditions, superhydrophobic surfaces with an apparent contact angle larger than 150 degrees and a sliding angle smaller than 10 degrees were achieved due to the formation of a hierarchical structure. The origin of hydrophobic behavior was discussed based on Wenzel and Cassie models. In addition, the effects of surface modification of Si surface nanostructures on their hydrophobic characteristics were also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.