Abstract
A tool for prediction of conserved secondary structure of a set of homologous single-stranded RNAs is presented. For each RNA of the set the structure distribution is calculated and stored in a base pair probability matrix. Gaps, resulting from a multiple sequence alignment of the RNA set, are introduced into the individual probability matrices. These 'aligned' probability matrices are summed up to give a consensus probability matrix emphasizing the conserved structural elements of the RNA set. Because the multiple sequence alignment is independent of any structural constraints, such an alignment may result in introduction of gaps into the homologous probability matrices that disrupt a common consensus structure. By use of its graphical user interface the presented tool allows the removal of such misalignments, which are easily recognized, from the individual probability matrices by optimizing the sequence alignment with respect to a structural alignment. From the consensus probability matrix a consensus structure is extracted, which is viewable in three different graphical representations. The functionality of the tool is demonstrated using a small set of U7 RNAs, which are involved in 3'-end processing of histone mRNA precursors. Supplementary Material lists further results obtained. Advantages and drawbacks of the tool are discussed in comparison to several other algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.