Abstract

The filter design criteria in practice are currently based on laboratory tests that were carried out on uniform base soil and filter materials. These criteria mostly involve specific particle size ratios, where the system of base soil and filter is represented by some characteristic particle sizes. Consequently, these criteria have limitations when applied to nonuniform materials. In filters, it is the constriction size rather than the particle size that affects filtration. In this paper, a mathematical procedure to determine the controlling constriction size is introduced, and subsequently, a constriction-based retention criterion for granular filters is presented. The model also incorporates the effect of nonuniformity of base soil in terms of its particle size distribution, considering the surface area of the particles. The proposed retention criterion is verified based on experimental data taken from past studies plus large-scale filtration tests carried out by the authors. The model successfully and distinctly demarcates the boundary between effective and ineffective filters in the case of cohensionless base soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.