Abstract

The aim of the present study was to determine the role of endothelium and superoxide in the responses of isolated mouse coronary arteries to hypoxia-reoxygenation. Isolated mouse coronary artery was cannulated, pressurized at 60 mmHg, and constantly superfused with recirculating Krebs-Ringer bicarbonate solution for continuous measurement of intraluminal diameter (ID) by video microscopy. Under a no-flow condition, hypoxia (0% O(2), 30 min) caused vasoconstriction. Reoxygenation caused a further vasoconstriction (ID change from 111.4 +/- 11.1 to 91 +/- 16.5 microm) that was significantly reduced by removal of endothelium (ID change from 105.4 +/- 27 to 109.9 +/- 23.4 microm). Cu/Zn superoxide dismutase (150 U/ml) did not alter the hypoxic vasoconstriction but abolished the reoxygenation-caused endothelium-dependent vasoconstriction. Hypoxia-reoxygenation markedly enhanced the generation of superoxide that was significantly reduced by either removing the endothelium or treated these endothelium-intact vessels with superoxide dismutase. These results suggest that, in isolated mouse coronary arteries, hypoxia causes vasoconstriction that is independent of endothelium, whereas reoxygenation causes vasoconstriction that is mediated by enhanced generation of superoxide from endothelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.