Abstract

ABSTRACT Plant virus-encoded movement proteins (MPs) interact with endoplasmic reticulum (ER) membranes, the cytoskeleton, and plasmodesmata (PD) to mediate intracellular delivery of the virus genome to PD and its further transport through PD from infected to healthy cells. The Hibiscus green spot virus MP termed BMB2 has been shown to induce constrictions of ER tubules and to occur at highly curved membranes, thus showing properties similar to those of reticulons, a class of cellular proteins inducing membrane curvature and shaping the ER tubules. Consistent with this BMB2 function, mRFP-BMB2 localizes to discrete, constricted regions scattered along the ER tubules. Here, using BMB2-mRFP fusion protein as a BMB2 derivative with partially disabled functionality, we demonstrate that the focal localization of BMB2 to discrete sites along the ER tubules is insufficient to induce local tubule constrictions at these sites, suggesting that the formation of ER tubule constrictions represents a specific BMB2 function and is not simply a mechanistic consequence of its localization to the ER. The presented data suggest that the formation of ER-residing BMB2-containing distinct small aggregates, or protein platforms, can be uncoupled from BMB2-induced ER tubule constrictions, whereas the anchoring of platforms at particular ER sites appears to be linked to the constriction of ER tubules at these sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.