Abstract

Ergovaline has been extensively used to study vasoactive effects of endophyte- (Neotyphodium coenophialum) infected tall fescue (Lolium arundinaceum). However, initial results indicated that an extract of toxic tall fescue seed (E+EXT) is more potent than ergovaline alone in a right ruminal artery and vein bioassay. The E+EXT induced a greater contractile response than an equal concentration of ergovaline alone in the ruminal artery of heifers (P = 0.018). This led to a hypothesis that other compounds in the seed extract contribute to vasoconstriction. Thus, experiments were conducted to determine if vasoactivity of an E+EXT is different from a mixture of ergot alkaloids (ALK; ergovaline, ergotamine, ergocristine, ergocryptine, ergocornine, ergonovine, and lysergic acid) of similar concentrations and to determine if the vasoactivity of an E+EXT differs from an endophyte-free tall fescue seed extract (E-EXT). Segments of lateral saphenous vein and right ruminal artery and vein were collected from Holstein steers (n = 6) shortly after slaughter. Vessels were cleaned of excess connective tissue and fat and sliced into segments that were suspended in a multimyograph chamber with 5 mL of continually oxygenated Krebs-Henseleit buffer, equilibrated for 90 min, and exposed to a reference compound (120 mM KCl for ruminal vessels and 0.1 mM norepinephrine for saphenous vein). Increasing concentrations of each treatment (E+EXT, E-EXT, ALK, and ergovaline) were added to the respective chamber every 15 min after buffer replacement. Data were normalized as a percentage of maximal contractile response of the reference compound and fit to a sigmoidal concentration response curve. Ergovaline, ALK, and E+EXT induced similar responses in the saphenous vein, ruminal artery, and ruminal vein. The E+EXT displayed a smaller EC(50) (half maximal effective concentration) than ergovaline or ALK in the saphenous vein and ruminal vein (P < 0.008), but not the ruminal artery (P = 0.31). Extrapolated maximum response was greatest in the saphenous vein for ergovaline, least for E+EXT, and intermediate for ALK (P < 0.0001). The E-EXT did not induce a contractile response in any vessel tested (P > 0.1). Data from this study indicate that ergovaline is largely responsible for the locally induced vasoconstriction of bovine vasculature observed with endophyte-infected tall fescue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.