Abstract

Sensing via analyte passage through a constricted aperture is a powerful and robust technology which is being utilized broadly, from DNA sequencing to single virus and cell characterization. Micro- and nanoscale structures typically translocate a constricted aperture, or pore, using electrophoretic force. In the present work, we explore the advances in metrology which can be achieved through rapid directional switching of hydrodynamic forces. Interestingly, multipass measurements of microscale and nanoscale structures achieve cell discrimination. We explore this cell-discrimination phenomenon as well as other features of hydrodynamic focusing such as dynamic trapping and discrete interval sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.