Abstract
In order to estimate continuously the dynamic location of a car, dead reckoning and absolute sensors are usually merged. The models used for this fusion are non-linear and, therefore, classical tools (such as Bayesian estimation) cannot provide a guaranteed estimation. In some applications, integrity is essential and the ability to guaranty the result is a crucial point. There are bounded-error approaches that are insensitive to non-linearity. In this context, the random errors are only modeled by their maximum bounds. This paper presents a new technique to merge the data of redundant sensors with a guaranteed result based on constraints propagation techniques on real intervals. We have thus developed an approach for the fusion of the two ABS wheel encoders of the rear wheels of a car, a fiber optic gyro and a differential GPS receiver in order to estimate the absolute location of a car. Experimental results show that the precision that one can obtain is acceptable, with a guaranteed result, in comparison with an extended Kalman filter. Moreover, constraints propagation techniques are well adapted to a real-time context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.