Abstract

AbstractAlthough partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on young seafloor (<60 Ma) equates to a ~20 m thick layer spread across the seafloor. If these seamounts tap partial melt within a ~20 km thick layer beneath the ridge flanks, they indicate extraction of an average melt fraction of ~0.1%. If they source thinner layers or more laterally restricted domains, larger melt fractions are required. Increased seamount volumes for older lithosphere suggest either more active ridge flank volcanism during the Cretaceous or additional recent melt eruption on older seafloor. Pacific basin age constraints suggest that both processes are important. Our results indicate that small volumes of partial melt may be prevalent in the upper asthenosphere across ocean basins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.