Abstract

We compute robust lower limits on the spin temperature, $T_{\rm S}$, of the $z=8.4$ intergalactic medium (IGM), implied by the upper limits on the 21-cm power spectrum recently measured by PAPER-64. Unlike previous studies which used a single epoch of reionization (EoR) model, our approach samples a large parameter space of EoR models: the dominant uncertainty when estimating constraints on $T_{\rm S}$. Allowing $T_{\rm S}$ to be a free parameter and marginalizing over EoR parameters in our Markov Chain Monte Carlo code 21CMMC, we infer $T_{\rm S}\ge3 {\rm K}$ (corresponding approximately to $1\sigma$) for a mean IGM neutral fraction of $\bar{x}_{\rm H{\scriptsize I}}\gtrsim0.1$. We further improve on these limits by folding-in additional EoR constraints based on: (i) the dark fraction in QSO spectra, which implies a strict upper limit of $\bar{x}_{\rm H{\scriptsize I}}[z=5.9]\leq 0.06+0.05 \,(1\sigma)$; and (ii) the electron scattering optical depth, $\tau_{\rm e}=0.066\pm0.016\,(1\sigma)$ measured by the Planck satellite. By restricting the allowed EoR models, these additional observations tighten the approximate $1\sigma$ lower limits on the spin temperature to $T_{\rm S} \ge 6$ K. Thus, even such preliminary 21-cm observations begin to rule out extreme scenarios such as `cold reionization', implying at least some prior heating of the IGM. The analysis framework developed here can be applied to upcoming 21-cm observations, thereby providing unique insights into the sources which heated and subsequently reionized the very early Universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.