Abstract

ABSTRACT If they exist, networks of superconducting cosmic strings are capable of injecting copious amounts of electromagnetic energy into the background over a broad range of frequencies. We study this injection both analytically, as well as numerically using the thermalization code CosmoTherm. With our refined analytic formalism, we update constraints from CMB spectral distortions by following the injection of entropy, as well as energy, on the amplitude of the μ-distortion, leading to a significant improvement in those limits. Furthermore, we utilize the full shape of the distorted spectrum from CosmoTherm to include constraints from non-μ, non-y type distortions. Additionally, we use the outputs for the ionization history and global 21-cm signal to derive and update constraints on string model parameters using measurements from other data sets. Analysis of CMB anisotropies provides the most stringent constraints, though with a slightly modified shape and strength when compared to previous results. Modifications of the reionization history provide new bounds in the high current domain, and we also find that the observations of the low-frequency radio background probe a small region of parameter space not explored by other data sets. We also analyse global 21-cm constraints, and find that the inclusion of soft photon heating plays a crucial role, essentially removing any constraints in the considered parameter domain. Spectral distortion measurements from COBE/FIRAS are covered by other constraints, but our conservative forecast shows that a PIXIE-type satellite would probe important unexplored regions of parameter space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.