Abstract

Cosmic strings generate vector and tensor modes in the B-channel of polarisation, as well as the usual temperature power spectrum and E-mode polarisation spectrum. We use the power spectrum obtained from high-resolution Nambu-Goto cosmic string simulations together with the Planck and BICEP2 likelihoods to explore the degeneracies appearing between cosmic strings and other cosmological parameters in different inflationary scenarios, as well as the constraints that can be imposed on cosmic strings in each of these situations. In standard ΛCDM, the Planck likelihood yields an upper limit Gμ<1.49 × 10−7 (95% confidence). We also analyse the possibility of explaining the BB power spectrum signal recently detected by the BICEP2 probe. We find that cosmic strings alone are able to explain only part of the B-mode polarisation signal. Apart from the standard ΛCDM model, we look at the following non-minimal parameters: the running of the spectral index, non-zero tensor-to-scalar ratio, additional degrees of freedom (Neff) and sterile neutrinos. We find that in both Planck and BICEP2 scenarios adding Neff induces degeneracies between cosmic strings and Neff and other ΛCDM parameters. With Neff a larger contribution from cosmic strings is allowed, even favoured, but after combining with large-scale structure data, such as BAOs, strings remain strongly constrained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call